Stability of the interior problem of tomography and the spectral properties of the Finite Hilbert transform.
Alexander Katsevich, University of Central Florida

We study the interior problem of tomography by using the Gelfand-Graev formula, which converts the tomographic data into the finite Hilbert transform (FHT) of an unknown function f along a collection of lines. Pick one such line, call it the x-axis, and assume that the function to be reconstructed depends on a one-dimensional argument by restricting f to the x-axis. Let I be the interval where f is supported, and J be the interval where the Hilbert transform of f can be computed using the Gelfand-Graev formula. The equation to be solved is Hf=g, where H is the FHT that integrates over I and gives the result on J, i.e. H: L^2(I) -> L^2(J), and g is known on J. In the case of complete data, I is a subset of J, and the classical FHT inversion formula reconstructs f in a stable fashion. In the case of interior problem (i.e., when the tomographic data are truncated), I is no longer a subset of J, and the inversion problems becomes severely unstable. By using a differential operator L that commutes with H we determine the spectral properties of H depending on the relative positions of the intervals I and J.